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Boolean Logic



Circuit      ( in digital electronics )
A circuit can be viewed as a black box with
 •   one or more discrete-valued input terminals
 •   one or more discrete-valued output terminals
 •   a functional speci�cation describing the relationship
   between input and output
 •   a timing speci�cation describing the delay
   between inputs changing and outputs responding

Peering inside the black box, it is composed of
  •   nodes       wires classified as input, output and internal
  •   elements        themselves circuits 
         with inputs, outputs and specifications

functional speci�cation

time speci�cation

input output E1

E2
E3

A
B
C

Y
Z



Boolean algebra

Boolean algebra is based on three operations :

  •    conjunction  :      x∧y
  •    disjunction  :      x∨y 
  •    negation   :       ¬x

 and two constants :

   •    true     :           
  •    false   :           

These operations and constants are required 
to satisfy a series of equations.



Boolean algebra

Associativity :

      
Commutativity :

Distributivity :

Identities :

Annihilation :

( x ∧ y ) ∧ z      =      x ∧ ( y ∧ z )
( x ∨ y ) ∨ z      =      x ∨ ( y ∨ z )

x ∧ y       =       y ∧ x
x ∨ y       =       y ∨ x

x ∧ ( y ∨ z )      =     ( x ∧ y ) ∨ ( x ∧ z )

x ∧       =       x
x ∨       =       x

x ∧       =       



Boolean algebra

Idempotence :

      
Absorption :

Distributivity :

Annihilation :

x ∧ x       =       x
x ∨ x       =       x

x ∧ ( x ∨ y )      =      x
x ∨ ( x ∧ y )      =      x

x ∨       =       

x ∨ ( y ∧ z )      =     ( x ∨ y ) ∧ ( x ∨ z )



Boolean algebra

Complementation :

      
Double negation :

De Morgan duality :

x  ∧ ¬ x       =            
x  ∨ ¬ x       =       

¬       =       
¬       =       

¬ x ∧ ¬ y       =       ¬ ( x ∨ y )
¬ x ∨ ¬ y       =       ¬ ( x ∧ y )

¬¬ x       =       x



Boolean algebra

De�nition
A boolean algebra is de�ned as a set  A  equipped with the operations
and constants  ∧ ∨ ¬           satisfying the mentioned equations.  

Observation :  every boolean algebra is ordered by the order below :

x  ≤  y         ⇔     x    =    x  ∧  y  

In this ordered set  A :

   
• the constant      is the least element
• the constant      is the greatest element

Recall that an order is a transitive, re�exive and antisymmetric relation.



Boolean algebra

Accordingly,  the negation  ¬  is anti-monotone in the sense that :

x  ≤  y           ⇒     ¬ y    ≤  ¬ x

Moreover, the two operations   ∧ ∨  are monotone in the sense that :

x  ≤  x  and  y  ≤  y        ⇒     x ∧ y   ≤    x ∧  y   
, ,

∀x, x, y, y  ∈ A x A x A x A, ,

x  ≤  x  and  y  ≤  y        ⇒     x ∨ y   ≤    x ∨ y   
, , , ,

, ,

∀x, y  ∈ A x A



Example of boolean algebra

The set    A  =  { true , false }    de�nes a boolean algebra with :

      true ∧ true   =  true     true ∨ true   =  true 
      true ∧ false  =  false     true ∨ false  =  true
     false ∧ false  =  false    false ∨ false  =  false

 

¬ true  =  false        ¬ false  =  true

  =   true                   =   false

Observe that in this boolean algebra :

        false  =  false ∧ true

and thus :   

       false   ≤    true   



Example of boolean algebra

Here, we suppose given a set  U.

The set  A  whose elements are the subsets of   U   is a boolean algebra
with conjunction, disjunction and negation de�ned as follows :

      

 

¬ X   =   U  \  X

  =   U                  =   ∅

Observe that one recovers the boolean algebra { true , false }
when   U   is de�ned as the singleton set    U  =  {   } .

X ∧ Y   =   X ∩ Y     X ∨ Y   =   X ∪ Y

*

*true  =  {   }      false  =  ∅   



Venn diagrams

X ∧ Y   =   X ∩ Y X ∨ Y   =   X ∪ Y

¬ X   =   U  \  X

  =   U   =   ∅



Venn diagrams
( derived constructions )

X � Y   =   ( X ∨ Y )  \   ( X ∧ Y )
    =   ( X ∨ Y ) ∧ ¬ ( X ∧ Y )  

X  \  Y   =   X  ∧ ¬Y 

Symmetric di�erence 
=    exclusive or

Di�erence



Venn diagrams
( derived constructions )

X → Y   =   ¬ ( X ∧ ¬Y )

Implication

Key property of implication :

X   ≤  Y → Z              ⇔     X  ∧  Y   ≤   Z

=    ¬ X   ∨   Y



Product-of-sums form

Every boolean expression may be transformed modulo the equations
of boolean algebras into a conjunction of disjunctions :

prodofsum     =        |    sum   |   prodofsum   ∧   prodofsum

sum      =         |    literal     |    sum   ∨   sum

literal     =     atom    |    ¬ atom

prodofsum     =        |    sum   |   prodofsum    x   prodofsum

sum      =         |    literal     |    sum   +   sum

literal     =     atom     |     atom

Same grammar formulated this time with the arithmetic notation : 



Sum-of-products form

Every boolean expression may be transformed modulo the equations
of boolean algebras into a disjunction of conjunctions :

sumofprod     =         |    prod    |   sumofprod   ∨   sumofprod

prod     =         |    literal     |    prod   ∧   prod

literal     =     atom    |    ¬ atom

sumofprod     =        |    prod   |   sumofprod   +   sumofprod

prod       =        |    literal     |    prod    x    prod

literal     =     atom     |     atom

Same grammar formulated this time with the arithmetic notation : 



Sum of products in schematics

A B C

AND

AND

AND

O
R

minterm   A  B  C

minterm   A  B  C

minterm   A  B  C

Y  =  A  B  C  +  A  B  C  +  A  B  C  

Y



Sum of products in schematics

A B C

AND

AND

minterm     B  C

minterm     A  B

Y  =    B  C   +   A  B 

Y

O
R

A simpli�ed version of the previous expression



Exercise

A  B  C  +  A  B  C  +  A  B  C   =    B  C   +   A  B   

Show that the equality 

follows from the equations of  boolean algebra.



Solution

A  B  C  +  A  B  C  +  A  B  C   =    B  C   +   A  B   

Show that the equality 

follows from the equations of  boolean algebra.

A  B  C  +  A  B  C    =    (  A  +  A  )  B  C   distributivity

=         B  C   complementation

=        B  C  identity

A  B  C  +  A  B  C    =      A  B  ( C + C )  distributivity

=      A  B   complementation

=       A   B  identity



Solution

A  B  C  +  A  B  C  +  A  B  C   =    B  C   +   A  B   

Show that the equality 

follows from the equations of  boolean algebra.

A  B  C  +  A  B  C  +  A  B  C     =     A  B  C  +  A  B  C  +  A  B  C  +  A  B  C

by idempotence and associativity

=        B  C    +    A  B  

by the two equations of the previous page

This establishes the expected equation.



Bubble Pushing

A
B

YC
D

A
B

YC
D

is  functionally equal to 

The digital circuit 
Suppose that one wants

to remove the NAND gate

No bubble
on the outpout



Bubble Pushing

A
B

YC
D

is  functionally equal to 

The digital circuit Two bubbles in a row

A
B

YC
D



Bubble Pushing

A
B

YC
D

is  functionally equal to 

The digital circuit 

A
B

YC
D

Y  =  A  B  C  +  D



Bubble Pushing for CMOS logic

In some situations, one would like to transform
a logical circuit expressed with AND and OR gates
into an equivalent logical circuit constructed
with NAND gates, NOR gates and inverters.

One typical reason is that NAND gates, NOR gates
and inverters are easier to construct in CMOS technology.



Bubble Pushing for CMOS logic

One brutal way to achieve the translation is to replace 
 •    every AND gate by a NAND gate followed by an inverter
 •    every OR gate by a NOR gate followed by an inverter
in the way done below :

This procedure works but is far from optimal in general
in the number of logical gates in the final CMOS circuit.



Bubble Pushing for CMOS logic

A more sophisticated way to achieve the translation is
to add two negations on some of the wires
of the original logical circuit : 

Note that each negation is represented here by a bubble.



Bubble Pushing for CMOS logic

A more sophisticated way to achieve the translation is
to add two negations on some of the wires
of the original logical circuit : 

One obtains in this way a CMOS circuit with �ve logical gates
( instead of six gates as in the previous translation )



The illegal value   X

A = 0

B = 1

Y = X

Here, the output   Y   has an unknown or illegal value.

The situation is called a « contention » and is considered
as an error which should be avoided.

The reason is that contention may cause large amounts
of power to be dissipated between the logical gates,
resulting in the circuit getting hot and possibly damaged. 



The tristate bu�er has three possible output values :
 •    HIGH  ( 1 )
 •    LOW  ( 0 )
 •    FLOATING   ( Z )

E A Y

0 0

0 1

Z

1 0

Z

0

11 1

YA

E

The �oating value Z

input output

enable

The output has a �oating value means that the wire   Y  
may receive any voltage depending on the context.

active high enable



The tristate bu�er has three possible output values :
 •    HIGH  ( 1 )
 •    LOW  ( 0 )
 •    FLOATING   ( Z )

E A Y

0 0

0 1

0

1 0

1

Z

Z1 1

YA

E

The �oating value Z

input output

enable

The output has a �oating value means that the wire   Y  
may receive any voltage depending on the context.

active low enable



Tristate bus connecting multiple chips

Processor
to bus

from bus

en1

Video
to bus

from bus

en2

Ethernet
to bus

from bus

en3

Memory
to bus

from bus

en4

Shared bus

Today, higher speeds are achieved by point-to-point links between chips



Karnaugh Maps



B C Y

0 0

0 1

1

1 0

1

0

01 1

A

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

0

0

0

0

A typical truth value table

B

C

Y

A
Digital
Circuit



B C Y

0 0

0 1

1

1 0

1

0

01 1

A

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

0

0

0

0

From the truth table to the K-map

C

Y

0 0

0 0

0

0

AB

1

1

00 01 11 10

0

1

Note the clever use of Gray codes here



Same K-map with associated minterms

C
Y

0 0

0 0

0

0

1

1

00 01 11 10

0

1

C

Y

ABC

AB

ABC

00 01 11 10

0

1

ABC ABC

ABC ABC ABC ABC

Y   =   ABC   +   ABC

From this, one deduces that :

AB.



K-map minimisation

C

Y

0 0

0 0

0

0

AB

1

1

00 01 11 10

0

1

Y   =   ABC   +   ABC    =    AB

By circling the 1’s in adjacent squares, one deduces that :



Seven-segment display digits

Seven-segment display digits were invented at the beginning of the 20th century.
They became very popular in the 1970’s with the advent of LED.



Seven-segment display decoder

a

b

c

d

f

e

gInput Output

4 7



Seven-segment display decoder truth table

D3.0. Sa Sb Sc Sd Se Sf Sg

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

others

1               1               1               1               1               1               0

0               1               1               0               0               0               0

1               1               0               1               1               0               1

1               1               1               1               0               0               1

0               1               1               0               0               1               1

1               0               1               1               0               1               1

1               0               1               1               1               1               1

1               1               1               0               0               0               0

1               1               1               1               1               1               1

1               1               1               1               0               1               1

0               0               0               0               0               0               0



Decoder K-maps minimisation

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              0             1

01          0             1              0             1

11          1             1              0             0

10          1             1              0             0

Sb
D1.0.

D3.2.
00            01           11          10

00          1             1              0             1

01          1             0              0             1

11          1             1              0             0

10          1             0              0             0



Decoder K-maps

D1.0.
D3.2.

00            01           11          10

00          1             1              0             0

01          1             1              0             0

11          1             1              0             0

10          1             1              0             0

D1.0.
D3.2.

00            01           11          10

00          0             0              1             1

01          0             0              1             1

11          0             0              1             1

10          0             0              1             1

D3

D3

D3  denotes the set of inputs with input bit  D3  equal to 1

D3  denotes the set of inputs with input bit  D3  equal to 0



Decoder K-maps

D1.0.
D3.2.

00            01           11          10

00          0             1              1             0

01          0             1              1             0

11          0             1              1             0

10          0             1              1             0

D1.0.
D3.2.

00            01           11          10

00          1             0              0             1

01          1             0              0             1

11          1             0              0             1

10          1             0              0             1

D2 D2

D2  denotes the set of inputs with input bit  D2  equal to 1

D2  denotes the set of inputs with input bit  D2  equal to 0



Decoder K-maps

D1.0.
D3.2.

00            01           11          10

00          0             0              0             0

01          0             0              0             0

11          1             1              1             1

10          1             1              1             1

D1.0.
D3.2.

00            01           11          10

00          1             1              1             1

01          1             1              1             1

11          0             0              0             0

10          0             0              0             0
D1

D1

D1  denotes the set of inputs with input bit  D1  equal to 1

D1  denotes the set of inputs with input bit  D1  equal to 0



Decoder K-maps

D1.0.
D3.2.

00            01           11          10

00          0             0              0             0

01          1             1              1             1

11          1             1              1             1

10          0             0              0             0

D1.0.
D3.2.

00            01           11          10

00          1             1              1             1

01          0             0              0             0

11          0             0              0             0

10          1             1              1             1

D0

D0

D0  denotes the set of inputs with input bit  D0  equal to 1

D0  denotes the set of inputs with input bit  D0  equal to 0



Decoder K-maps minimisation

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              0             1

01          0             1              0             1

11          1             1              0             0

10          1             1              0             0

Sb
D1.0.

D3.2.
00            01           11          10

00          1             1              0             1

01          1             0              0             1

11          1             1              0             0

10          1             0              0             0



Decoder K-maps minimisation

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              0             1

01          0             1              0             1

11          1             1              0             0

10          1             1              0             0

Sb
D1.0.

D3.2.
00            01           11          10

00          1             1              0             1

01          1             0              0             1

11          1             1              0             0

10          1             0              0             0
D3D1

D3D2D0

D2D1D0

D3D2D1

D2D1D3D1D0

D3D2 D3D1D0Sa  =  D3D1 + D3D2D0 + D3D2D1 + D2D1D0

Sb  =  D3D2 + D2D1 + D3D1D0 + D3D1D0



Decoder K-maps minimisation

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              0             1

01          0             1              0             1

11          1             1              0             0

10          1             1              0             0
D3D1

D3D2D0

D2D1D0

D3D2D1

Sa  =  D3D1 + D3D2D0 + D3D2D1 + D2D1D0



Decoder K-maps minimisation

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              0             1

01          0             1              0             1

11          1             1              0             0

10          1             1              0             0
D3D1

D3D2D0

D3D2D1

Sa  =  D3D1 + D3D2D0 + D3D2D1 + D3D2D0

D3D2D0



A common mistake

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              0             1

01          0             1              0             1

11          1             1              0             0

10          1             1              0             0
D3D1

D3D2D0

D3D2D1

Sa  =  D3D1 + D3D2D0 + D3D2D1 + D3D2D1D0

D3D2D1D0 The implicant is not prime



Seven-segment display decoder truth table
with X’s

D3.0. Sa Sb Sc Sd Se Sf Sg

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

others

1               1               1               1               1               1               0

0               1               1               0               0               0               0

1               1               0               1               1               0               1

1               1               1               1               0               0               1

0               1               1               0               0               1               1

1               0               1               1               0               1               1

1               0               1               1               1               1               1

1               1               1               0               0               0               0

1               1               1               1               1               1               1

1               1               1               1               0               1               1

X               X               X               X               X               X               X

Here, the value  X  means that the value is undetermined : it can be  0  or  1.  



Decoder K-maps minimisation with X’s

Sa
D1.0.

D3.2.
00            01           11          10

00          1             0              X             1

01          0             1              X             1

11          1             1              X             X

10          1             1              X             X

Sb
D1.0.

D3.2.
00            01           11          10

00          1             1              X             1

01          1             0              X             1

11          1             1              X             X

10          1             0              X             X

Sa  =   D3  +  D2D0  +  D2D0  +  D1

Sb  =   D2  +  D1D0  +  D1D0

D1

D3

D2D0

D2D0

D2

D1D0

D1D0



Exercise 1

Complete the design of the seven-segment decoder
by designing boolean equations for the segments Sc and Sd :

a.  assuming that inputs greater than 9
 must produce blank ( 0 ) outputs

b. assuming that inputs greater than 9
 are don’t cares
 

Then, sketch a reasonably simple gate-level implementation
in the case b. and simulate the resulting circuits on CircuitLab. 



Combinational Building Blocks



Multiplexor ( mux )

Y

D0

D1

S

AND

AND

OR
NOT

Y

D0

D1

S

0

1

Y
D0

D1

S

0

1



K-map minimisation

S

Y

1 1

0 1

0

1

0

0

00 01 11 10

0

1

Y   =   SD1   +   SD0

By circling the 1’s in adjacent squares, one deduces that :

SD0

D1.0.

SD1



4 : 1    multiplexers

Y

S1.0

D1
00
01
10
11

D2

D0

D3

.

2



Implementation of the 4:1 multiplexer

AND

AND

AND

O
R

Y

AND

D1

D2

D0

D3

S0S1 Two-level
logic



Implementation of the 4:1 multiplexer

Tristates

Y

S1S0

D1

D2

D0

D3

S1S0

S1S0

S1S0



Implementation of the 4:1 multiplexer

Hierarchical

Y

D0

D1

S1

0

1

S0

0

1

0

1

D2

D3



Alyssa P. Hacker needs to implement the function 

to �nish her senior project, but when she looks in her lab kit, 
the only part she has left is an 8:1 multiplexer. 

How does she implement the function?

Exercise (  Example 2.12 in Harris and Harris  )

Y   =   AB  +  BC  +  ABC 



B C Y

0 0

0 1

1

1 0

0

0

11 1

A

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

1

0

0

Solution

Y   =   AB  +  BC  +  ABC 

Y

S2.0

D1
D2

D0

D3

.

3

D5
D6

D4

D7

000
001
010
011
100
101
110
111

8:1 multiplexer ( mux )



B C Y

0 0

0 1

1

1 0

0

0

11 1

A

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

1

0

0

Solution

Y   =   AB  +  BC  +  ABC 

Y

000
001
010
011
100
101
110
111

8:1 multiplexer ( mux )

A B C

GND

VDD



B C Y

0 0

0 1

1

1 0

0

0

11 1

A

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

1

0

0

Exercise

Y   =   AB  +  BC  +  ABC 4:1 multiplexer ( mux )

Y

S1.0

D1
00
01
10
11

D2

D0

D3

.

2

inverter

Can you construct the same boolean function
with a 4:1 multiplexer and an inverter ?



B C Y

0 0

0 1

1

1 0

0

0

11 1

A

0 0

0 1

1 0

1 1

0

0

0

0

1

1

1

1

1

1

0

0

Solution

Y   =   AB  +  BC  +  ABC 

Y

0 0

0 1

1 0

1 1

Can you construct the same boolean function
with a 4:1 multiplexer and an inverter ?

A B

C

GND

VDD



Decoders

A1

A0

2:4
decoder

00
01
10
11

Y2

Y0
Y1

Y3

0               0               0               0               0               1

0               1               0               0               1               0

1               0               0               1               0               0

A1 A0

1               1               1               0               0               0

Y2 Y0Y1Y3



Implementation of the 2:4 decoder

AND

AND

AND

AND

Y1

Y2

Y0

Y3

A0A1



Timing



Time delay

delay

A

Y

A

Y

Time



Propagation and contamination delay

contamination
delay

A

Y

A

Y

Time

propagation
delay



Critical vs. short path

A
B

Y
C

D

 

Critical path

Short path



Critical path
waveform

A
B

Y
C

D

 n1

n2

n1

A

propagation
delay

Y

n2

n1

A

Y

n2

t       =  2  t                +    tpd pd_and pd_or



Short path
waveform

A
B

Y
C

D

 

D

contamination
delay

n1

n2

Y

D

Y

t        =    t            cd cd_and



Exercise 2

t      ( ps )

30

60

80

90

Gate

NOT

2-input AND

3-input AND

4-input OR

tristate ( A to Y )

tristate ( enable to Y )

50

35

pd

Given the propagation delays for the components given below,
compare the worst-case timing of the three four-input multiplexer designs.

What is the critical path for each design?

Given your timing analysis, why might you choose one design over the other ?  

H & H Example 2.16






